NORTH CAROLINA STATE UNIVERSITY Department of Mechanical & Aerospace Engineering

MAE 589-004 Optical Engineering

Spring Semester 2014 Schedule: MW 11:05-12:20 pm Classroom: EBIII 02232 Website: Moodle TA: TBD, Email: ta@ncsu.edu Chih-Hao Chang Office: EBIII 3240 Office Hours: TBD Email: <u>chichang@ncsu.edu</u>

COURSE DESCRIPTION

This course provides an introduction to optics, with a focus on engineering applications. The course will cover topics in geometrical optics: ray-tracing, reflection, refraction, lens design, imaging optical systems, as well as topics in wave optics: basic electrodynamics, scalar wave theory, interference, Fresnel and Fraunhofer diffraction, image formation, Fourier optics, and 4F systems. Commonly observed optical systems, such as the human eye, microscopes/telescopes, and solar concentrators will be examined. The role of optics in advanced nano/microscale manufacturing will be highlighted, as well as applications in more efficient solar energy systems, engineered materials, and nanotechnology.

COURSE OBJECTIVES

- Analyzing optical systems using the ray properties of light. Designing lenses for compound optical systems using matrix ray tracing. Examine reflection, refraction, and diffraction using geometric principles.
- Analyzing optical systems using wave properties of light and scalar diffraction theory. Applying Fourier optics and linear systems principle to describe coherent optical systems.
- Designing optical instruments and devices for sensing, metrology, lithography, and other engineering applications in the fields of renewable energy and advanced manufacturing.

PREREQUISITES

• None.

PRIMARY TEXT

- E. Hecht, *Optics*, Addison-Wesley, 4th Ed., 2001.
- J. Goodman, *Introduction to Fourier Optics*, Roberts and Company Publishers, 3rd Ed, 2004.

GRADING	OPTION 1	OPTION 2
Homework	15%	5%
Exams (2)	15%, 20%	15%, 20%
Group Project	20%	20%
Final Exam	30%	40%

GROUP PROJECT

• Students will work in groups of 2 to study an active research topic in optics. The project can consist of a thorough literature review and detailed analysis of the current state of the subject, or a design of an improved existing or novel optical system. The students will present the project in a 15 minute presentation in groups during the last week of the course.

Score	>97	93-	90-	87-	83-	80-	77-	73-	70-	67-	63-	60-	<60
		96.9	92.9	89.9	86.9	82.9	79.9	76.9	72.9	69.9	66.9	62.9	
Grade	A+	А	A-	B+	В	B-	C+	С	C-	D+	D	D-	F

GRADING SCALE (W/ GRAY AREA)

TENTATIVE SCHEDULE

Week	Topics	Reading
Jan 6	I. Introduction Photons, electromagnetic spectrum, reflection & refraction.	H1, H3
Jan 8, 13 Jan 15, 22	II. Geometric Optics Snell's Law, total internal reflection, waveguides, prisms. Thin lenses, Huygens principle, matrix ray tracing. Thick lenses, effective focal planes. Reflective optics.	H4.1-7, H5.6 H5.2, H6.1-2
Jan 27, 29 Feb 3	III. Optical Systems Human eye, microscopes/telescopes, wavefront shaping, Microlithography and IC chip manufacturing.	H5.7-8
Feb 5	Exam #1	
Feb 10 Feb 12, 17 Feb 19	IV. Wave Optics Properties of electromagnetic waves, spherical/plane waves. Light interference, Fabry-Perot interferometer. Laser and temporal/spatial coherence.	H2.1-9, 3.1-2 H9.1-H9.8 H13.1
Feb 24, 26 Mar 3, 5 Mar 17, 19 March 24, 26	V. Fourier Optics Spatial Fourier transforms; spatial frequency domain. Fresnel and Fraunhofer diffraction. Wave description and Fourier properties of lenses. Coherent imaging, 4F systems, spatial filtering.	G2.1-2.3 G4.1-4.4 G5.1-5.2 G5.3, 6.2
March 31	Exam #2	
April 2 April 7, 9	Incoherent imaging systems. Resolution of imaging systems. Diffraction-limited microscopy/lithography, Moore's law for IC manufacturing.	G6.1-6.3 G6.5-6.6
April 14, 16 April 21, 23	VI. Emerging Fields in Optics Nano Optics: photonic crystal, bio-inspired nanostructures. Project Presentation. Final Review	Handouts
April 28	Final Exam 8:00-11:00 am	

OTHERS

- Class attendance/participation and attention to homework are highly recommended.
- Homework is due at the beginning of class. Late homework will not be accepted.
- Students are encouraged to work in small groups for homework assignments. However copying and submitting work of others is a violation of the NCSU Code of Student Conduct, and will be treated as such.
- Copying figures, equations, or text from other sources without referencing is **plagiarism**: a violation of the NCSU Code of Student Conduct.
- Any student with a disability who is registered with the University Office of Student Disability Services should schedule an appointment with Dr. Chang at the beginning of the semester to discuss academic accommodations.
- There will be no makeup examinations except for valid excuse.
- It is responsibility of each student to be familiar with the NCSU Code of Student Conduct, and in particular with those portions pertaining to academic dishonesty.
- Online class evaluation will be available for students to complete last week of class.